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ABSTRACT 

A coastal wave energy climatology is developed based 
on a 35-year wave observation record obtained by the 
US Army Corps of Engineers at the Field Research 
Facility in Duck, NC.  Spectral wave data from coastal 
observation stations ranging 6m to 26m in depth have 
been transformed using non-linear artificial neural net 
modeling to fill data gaps in a multi-decade time series 
at 18-m depth.  A depth-dependant full spectral 
calculation of wave power shows  Hurricane Isabel 
(2003) as the storm of record for maximum hourly 
wave power.   Annual total wave energies depict a 3-5 
year cycle, such occurs with major atmospheric cycles 
such as El Niño and the North Atlantic Oscillation.  
There are no obvious long term linear trends in the 
annual results. A coastal storm event chronology 
shows that nor’easters are the most frequent 
energetic storms, however the most powerful storms 
of the 35-year record are Hurricane Dennis (1999) 
followed by Hurricane Sandy (2012) and extratropical 
storm Nor’Ida (2009).   

1. INTRODUCTION 

There are increasing concerns over the effects of 
climate change on the coastal environment. Numerous 
offshore studies have investigated increases in North 
Atlantic storminess and wave heights (for example 
Bromirski and Kossin, 2008; Komar,2007; Keim et al., 
2004; The WASA Group, 1998; Kushnir et al., 1997.    It 
is conceivable that both sea level rise and increasing 
storminess would contribute to increased coastal wave 
energy and hence accelerated coastal erosion 
(Bromirski and Kossin, 2008; Keim et al., 2004).  
However a scarcity of long-term data on coastal wave 
climates and corresponding geomorphologic responses 
makes it difficult to investigate the influence of storm 
event sequences and long-term wave climate on our 
coastlines.   

Unlike the coastal environment, there are multiple 
data sets available for use in offshore wave climate 
studies.  In general past studies of North Atlantic 
offshore wave climate show strong correlations 

between wave energy and established climate 
indicators.  An investigation of hurricane season wave 
observations along the US Atlantic and Gulf coasts 
from 1980 through 2006 indicates that Tropical 
Cyclone (TC) generated wave power increased during 
the last 10 years of the study period (Bromirski and 
Kossin, 2008) and appears to be modulated by the 
Atlantic Meridional Mode (AMM), which modulates TC 
frequency (Chiang and Vimont, 2004).  Furthermore 
Bromirski and Kossin found a strong correlation 
between open-ocean and coastal wave power, 
however the coastal buoys employed were mostly on 
the outer shelf and hence a significant distance 
offshore. A 57-year hindcast of the northeast Atlantic 
wave climate (Dodet et al., 2010) reveals significant 
multi-year modulations correlated with the North 
Atlantic Oscillation (NAO), with the strongest 
correlations coming from higher latitudes. 

Long-term data in the Atlantic coastal environment has 
been obtained by the US Army Corps of Engineers 
(USACE) through a coastal field data collection 
program starting in 1980 at the Field Research Facility 
(FRF) in Duck, North Carolina. As depicted in Figure 1, 
The FRF is situated on an open sandy coast and subject 
to the energetic wind and wave environment of the 
mid-Atlantic Ocean. Initial measurements included 
winds, waves and morphologic surveys.    

 

Figure 1. US Army Corps of Engineers Field Research Facility, 
located on the open coast of North Carolina. 

Data collected at the FRF from 1980-1998 from non-
directional and directional Waverider buoys and an 8m 
depth pressure gauge array (Long and Shay, 1991) 
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were used to investigate the influence of storm groups 
on nearshore morphologic change (Lee et al., 1998; 
Birkemeier et al., 1999).  These studies produced a 
near-continuous wave height and period record by 
filling gaps in an 18-m Waverider record with data 
from an 8m pressure array, without any wave depth 
transformations applied.  The resulting wave record 
was used in a deep-water wave energy calculation to 
compute integrated wave power of key storm events.  
The results were used to demonstrate the importance 
of storm sequences in long-term morphologic change. 

The FRF measurements program has evolved over time 
with increased sampling frequency, new measurement 
types, and additional stations. In 1996 the non-
directional Datawell Waverider was changed to a 
directional and starting in 2008 a cross-shore array 
(XShore) of wave and current sensors was added with 
station depths ranging from 2-26m (Hanson et al., 
2009).  However, as with most field measurements, 
sporadic data gaps exist in the wave data from any 
given station.  Data gaps are detrimental to a long-
term climate analysis, as critical wave events can be 
missed resulting in erroneous mean and total wave 
energy calculations. A potential solution is to fill data 
gaps with wave data that has been depth-transformed 
from other FRF measurement stations.   The challenge 
is that the nearshore wave climate at Duck can become 
strongly nonlinear (Hanson et al., 2009). 

There are a variety of approaches that can be used to 
transform wave data between different stations and 
depths to fill data gaps. To accurately compute wave 
power, the spectral wave density is required, as bulk 
wave height and period parameters can overestimate 
wave power by 65% (Defne et al., 2009).  One option is 
to use a packaged spectral wave model, such as 
STWAVE-FP (Smith, 2007) or SWAN (Holthuijsen, 
2007).  However as the source terms are primarily 
based on linear wave theory, spectral modeling 
performance at Duck has been shown to be 
compromised when the waves become strongly 
nonlinear (Hanson et al., 2009).  A second option is 
that of a phase-resolving wave model, such as 
CGWAVE (Demirbilek and Panchang 1998). However 
phase resolving models can be computationally 
intensive for a 35-year hindcast. Finally we consider 
non-linear Artificial Neural Network (ANN) modeling. 
Neural nets have been used successfully in a variety of 
wave transformation applications, including the 
estimation of swell in coastal regions (Browne et al., 

2007), and the translation of satellite wave data to 
coastal locations (Kalra et al., 2005). More recently, 
Alexandre et al. (2015) applied an artificial learning 
multi-station approach for offshore buoy data gap 
filling.  However the vast majority of these studies 
focused on the transformation of the bulk wave 
parameters (height, period and direction) rather than 
the full wave energy density spectra which is needed 
for the accurate calculation of wave power. 

Here we develop and apply ANN techniques for 
transforming the FRF wave spectra between stations, 
allowing for the creation of nearly gap-free 35-year 
series of wave spectra. Furthermore we employ depth-
dependant spectral wave power calculations to 
describe the coastal wave energy climate.   

2. DATA  

The wind and wave data used in this study were 
obtained from US Army Corps of Engineers during 
1980-2014 by observation stations included in a 16.4-
km cross-shore wave and current array (XShore) at the 
FRF in Duck, North Carolina. As depicted in Figure 2, 
XShore includes Datawell Waverider buoys at 18- and 
26-m depths, 4 bottom mounted Nortek Acoustic 
Wave and Current (AWAC) sensors at 6-11 m depths, 
and an 8m depth pressure gage array. An instrument 
tower at the end of the FRF pier (7-m water depth) 
includes a meteorological station with a marine 
anemometer (currently RM Young Model 09101) 
located at an elevation of 19.1 m NAVD88. Specific 
details on each measurement station appear in Table 
1.  All data sets contain gaps due to incomplete records 
or sensor/mooring malfunctions. The amount of good 
data for each station, based on an hourly record count, 
appears in the last column of Table 1. 

 

Figure 2. FRF Wave measurement stations 
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Table 1.  FRF Measurement Stations used for Wave Energy Study 

Station Instruments 

Nominal Depth / 
Elevation 

(m,NAVD88) 

Cross-
shore 

Distance 
(km) 

North 
Latitude 

West 
Longitude Telemetry 

Placed in 
Service 

Removed 
from 

Service 
Good 
Data  

6m 
1000 kHz 

AWAC 
-6.8 0.60 36.1873 75.7465 Cable Sep 2008 ongoing 82% 

8m 
1000 kHz 

AWAC 
-8.7 0.90 36.1882 75.7432 Cable Sep 2008 ongoing 75% 

8m 
Directional 

Pressure Array 
-8.2 0.90 36.1872 75.7428 Cable Sep 1990 

Oct 
2012 

95% 

11m 
1000 kHz 

AWAC 
-11.5 1.20 36.1892 75.7392 Cable Sep 2008 ongoing 72% 

18m 
Non-

Directional 
Waverider 

-17.1 3.60 36.1999 75.7141 HF Oct 1980 
Oct 

1996 
45% 

18m 
Directional 
Waverider 

-19.3 3.60 36.1999 75.7141 HF/Iridium Nov 1996 ongoing 93% 

26m 
Directional 
Waverider 

-26 16.40 36.2577 75.5913 Iridium Jun 2008 ongoing 83% 

FRF Pier Anemometer 19.6 0.60 36.1837 75.7451 Cable Sep 1987 ongoing 68% 

 

The data set includes all major coastal storms and 
hurricanes that have influenced the region in the past 
35 years. A sample 6-year wave height record (2008-
2014) from the 18m station appears in Figure 3. 
Selected named tropical storms and significant 
nor’easter events are identified.  The storm of record 
for this period was Hurricane Sandy, with significant 
wave heights (Hs) greater than 6m. Data from multiple 
XShore stations during Hurricane Sandy appear in 
Figure 4.  Note that the 11m station was non-
operational during this storm, and a 2m depth station, 
not used in this study, is included in the figure. The 
significant wave height records (lower panel) show the 
evolution of the wave field at each of the included 

stations.  A distinct tidal signature can be seen in the 
2m wave heights.  Example energy-density spectra 
(upper left panel) compare the wave spectra at each 
station during the storm peak. The transformation of 
normalized wave energy across the array, as a function 
of kd where k is the peak wavenumber and d is the 
depth, appears in the upper right panel.  Note that 
there is significant loss of energy by breaking across 
the array during large storm events (Hanson et al., 
2009). Hence the data from one station cannot be 
directly used to fill gaps in the data from another 
station. Specific details on the preparation of these 
data follow below. 

 

 

Figure 3. Sample significant wave height record from 18m Waverider buoy, with identification of significant storm events. 
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Figure 4.  FRF XShore array data from Superstorm Sandy including wave height time series (lower panel), non-directional wave 
spectra during storm peak (upper left), and normalized energy loss across the array during storm peak (upper right). 

 

2.1. Wind Measurements 

Wind measurements were used in this study to help 
separate local wind sea from swell (see Wave 
Measurements).  The FRF wind measurements were 
collected by a variety of sensors allowing for 
redundancy in the event of sensor failure.  In 2014 a 
study was undertaken to develop a set of ‘best winds’ 
for this historical record.  Applying stringent quality 
assurance/quality control (QA/QC) standards, the raw 
data records were evaluated and filtered to identify 
and prepare the best records for representing the 
winds during each 10-minute observation time.  The 
selected records were used to compute a near-
continuous series of 10-minute average winds (vector 
averaging for directions).  Data gaps occur for time 
periods when all wind sensors were inoperative or 
when no data sets passed the QA/QC criteria.  The 
resulting 10-minute winds were forward-averaged to 
create 30-minute average winds which approximately 
correspond to the wave buoy data collection periods.   

 

2.2 Wave Measurements 

Several steps were required to prepare the wave data 
for long-term evaluation of wave climate. Data 
collection procedures for the various sensors are 
described by Hanson et al. (2009). Spectra were 
computed from approximately 30 minute wave records 
(60 minute for 8m pressure array) using the Iterative 
Maximum Likelihood Method (Oltman-Shay and Guza, 
1984).  Further preparation and analysis of the 
resulting wave spectra was performed using the 
WaveForce Technologies XWaves ocean wavefield 
analysis toolbox (Hanson and Fratantonio, 2015). 
These data preparation steps included:  

Smoothing- A 3-hour weighted smoothing algorithm 
was applied to all spectral data.  This helps to reduce 
noise and results in a more efficient partitioning of 
sea and swell parameters (see Transformation 
Modeling). 

Interpolation – The energy-density spectra were 
interpolated to a uniform set of frequency bins from 
0.05 – 0.5 Hz at 0.01 Hz resolution.  Due to array 
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configuration and pressure response, the 8m pressure 
array spectra have a high-frequency cut off of 0.35 Hz.  
Directional spectra were interpolated to 36 angle bins 
(0-350 deg) at 10-deg resolution.  Such interpolations 
significantly improve the spectral partitioning results 
(see below). 

Spectral tails – Spectral tails out to 0.5 Hz were added 
to the 8m pressure array spectra using the Ochi-
Hubble model (Ochi and Hubble, 1976) blended over 
4 overlapping frequency bins.  The cos

2n
 directional 

distribution of the highest observed spectral bin was 
used in the tail region. 

Subsetting – The resulting spectral files for each 
station were subset to 1-hour resolution. 

Wind interpolation – The 30-min forward-averaged 
winds were vector interpolated to match the wave 
record observation times.  No interpolations were 
performed in wind data gaps larger than 3 h in 
duration. For the wind data gaps, wind speed and 
directions were estimated based on properties of the 
observed wave spectra (Hanson et al., 2010). 

The above procedures have resulted in a consistent set 
of wave spectra from each XShore station.  Based on 
hourly record counts, the amount of good data from 
each of these stations is reflected in the last column of 
Table 1. 

3. TRANSFORMATION MODELING 
 
To generate a near-continuous wave record at any 
given station we fill in data gaps using transformed 
data from the other XShore stations. As stated 
previously, spectral information must be transformed 
to facilitate accurate calculation of wave energy over 
changing bottom depths.  As the 18-m station contains 
the longest series of data (non-directional and 
directional), we have selected this as our target 
location for the present study. 
 
We employ an ANN approach to develop a multi-
dimensional non-linear fit of wave observations at the 
various XShore stations to wave observations at the 
18m station.  The method is based on a two-layer feed-
forward network with i hidden neurons or layers.  A set 
of inputs with known outputs are used to train the nets 
using the Levenberg-Marquart back-propagation 
algorithm (Marquardt, 1963).  Performance is 
evaluated using mean square error and regression 
analysis. 
 

This approach employed the following data 
preparation and modeling steps: 
 

 Reduce wave spectra to a minimum set of 
parameters  

 Develop a training set of wind and wave 
parameter inputs and known wave outputs 
(targets) 

 Train nets and evaluate performance 

 Apply trained nets to transform XShore 
station data to fill 18m station gaps 
 

The entire process was iterative, in order to identify 
the optimum set of wind and wave parameter inputs 
to yield the best possible ANN performance. Details 
are provided in the following sections. 
  
3.1. Spectral Parameters 

Our initial attempts to transform the entire directional 
wave spectral matrix in a single neural net model 
yielded unsatisfactory results; transformed spectra had 
significantly higher noise levels than the original data. 
Hence we adopted an approach using a reduced set of 
wave spectral parameters, based on wave partitioning 
of sea and swell wave systems and spectral fitting with 
spectral shape models. 

Wave partitioning in XWaves uses an inverse 
watershed algorithm to isolate peak domains in 
directional wave spectra (Hanson and Fratantonio, 
2015; Hanson and Phillips, 2001). An iterative 
smoothing approach (Portilla et al., 2009) has been 
incorporated to successively combine neighboring 
peaks until the number of wave components is less 
than or equal to maximum threshold set by the user. 
Wind sea peaks are identified using a directional wave 
age criterion (Hanson and Phillips, 2001). Statistics 
computed for each partition include Hs, peak period 
(Tp), and mean wave direction (Dm).  Resulting sea and 
swell energy-frequency spectra are fit with the Ochi-
Hubble model which yields the spectral shape 
parameter (λ).  Partition directional distributions are fit 
with a cos

2n
 model yielding the distribution parameter 

2n (DNV, 2010; see equation 3.5.8.4). Hence each 

spectral partition is described by 5 fit parameters (Hs, 
Tp, Dm, λ, and 2n). For the FRF wave energy study, the 
analysis was set to produce no more than three wave  
partitions at each time step. Example partition and fit 
results appear in Figure 5. 
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Figure 5.  Sample spectral partitioning and fitting of 
observations at 18m station on 1 October 2014.  Upper 
panel:  Directional wave spectrum partitions with sea (WS), 
dominant swell (S1) and secondary swell (S2); Middle panel: 
Energy frequency fits with Ochi-Hubble model; Lower Panel:  
Directional distribution fits with cos

2n
 model. 

 

 

3.2. Model Development 

In comparing XShore station data sets it was 
determined that 2009 contained the most complete 
set of records across the array.  Therefore, the wave 
data from 2009 was initially selected as our ANN 
training set.  After testing, it was determined that a 
single year did not contain sufficient representation of 
peak wave height events. Hence, the data from all 
wave events with Hs > 2.5 standard deviations above 
the mean during 2008-2014 were added to the 2009 
training set.  As will be demonstrated, the resulting 
combined training set provides adequate 
representation of the FRF wavefield variability.  

Separate ANN models were trained for each of the 5 
spectral fit parameters. Our output (target) was the 
18m wave climate.  The inputs to each model included 
fit parameters computed for all remaining XShore 
stations (26m, 11m, 8m, and 6m).  To better handle 
wave direction transitions across 0 deg (North), the 
mean wave directions were split into north and east 
components: 











180
cos

Dm
Dn

 , 











180
sin

Dm
De

 . 

Due to the uniqueness of the 8m pressure array 
station, a separate set of ANN fit parameter models 
were generated for this station.  The specific input 
parameters selected for each model, along with the 
number of hidden layers employed, appear in Table 2.  
Note that Tp was highly correlated across stations; 
hence this model was replaced by setting Tp constant 
across the array for any given wave partition.  By 
including the nominal station depth h as an input 
parameter, each of the parameter models handled 
wave propagation in both directions; shoreward from 
the 26m station and back-propagating seaward from 
the nearshore stations.   

 

Table 2.  Artificial Neural Net Model Configurations 

Model 
Target 

Input Parameters 
Hidden 
Layers 

i 

Hs Hs, Tp, Dn, De, h 6 

Tp Tp 1 

Dm Tp, Dn, De, h 12 

 Hs, Tp, Dn, De,,  h 14 

2n Tp, Dn, De, 2n,  h 6 
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The trained nets were used to transform spectral fit 
parameters from the original station locations to the 
18m station.  The Ochi-Hubble and cos

2n
 models were 

employed to reconstruct wave partition spectra from 
the transformed fit parameters.  The resulting partition 
spectra from each time step were summed to 
regenerate full directional wave spectra. Sample 
reconstructed spectra appear in Figure 6.  Note that 
these are the same spectra used to demonstrate the 
partitioning and fitting process in Figure 5.   

 

 

Figure 6. Comparison of 18m observed and 26m transformed 
spectra from 1 October 2014.  Upper panel:  Energy-
frequency spectra; Lower Panel: Reconstructed directional 
spectrum from 26m station.  

A full validation is performed by comparing the 
transformed reconstructed 18m spectra to the actual 
measurements at this location.  The 26m and 6m 
station Hs validations appear in Figure 7.  All available 
data are included.  The left panels show how the 26m 
and 6m station Hs data compared to the 18m station 
data prior to transformation.  The right panels show 
the results of the transformation.  The transformed 
data exhibit essentially a zero bias (b), and in the case 
of 26m, greatly reduced RMS error (Erms). The higher 
Erms at the shallow station is likely a combination of 
factors, including (1) it is the station with the most 
depth change from 18m, the existence higher 
instrument (acoustic sonar) noise levels in the surf 
zone, and (3)  as a result of the shallow depth, the 
wavefield is most nonlinear at this station. 

 

3.3. Gap Filling 

Transformed and reconstructed spectra were used to 
fill in data gaps in the 18m station data.  We define a 
data gap as any time period persisting for 1 h or 
greater without a valid wave record. The priority order 
of stations for filling the gaps appears in Table 3.  Also 
provided are statistics on the amount of data used 
from each station. Once all the directional wave 
stations were used, the 18m non-directional Waverider 
set was used for any remaining gaps.  As the non-
directional Waverider data come from the 18m 
location, data transformation was not required. 
Approximately 27% of the data in the resulting long-
term wave record were transformed from other depth 
stations.  

 

 

Figure 7. Validation of neural net modeling results at 26m 
and 6m stations.  Left panels depict original station Hs 
compared to 18m wave Hs.  Right panels compare 
transformed station Hs to 18m Hs. The RMS error (Erms) and 
bias (b) are provided for each regression. 

Table 3.  Data Sources for 18m Long-Term Record 

Source 
(in priority order) 

# Records 

18m Directional Waverider 146,814 

26m Waverider 4,841 

11m AWAC 697 

8m AWAC 245 

6m AWAC 173 

8m Array 56,648 

18m Non-directional Waverider 24,751 

Total 234,169 
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4.  WAVE ENERGY CLIMATOLOGY 

Although wave height and period are traditionally 
looked at in terms of coastal wave climatologies, wave 
power is ultimately responsible in moving coastal 
sediments, driving electrical power generators, 
promoting air-sea exchange, mixing the water column 
and even providing the required push for recreational 
surfing. Hence we focus on wave power and total 
energy considerations. 

4.1. Wave energy calculations 

The depth-dependant full spectral wave power 
calculation (Defne et al., 2009) is given by  

                  , 

with water density, gravitational acceleration g, and 
wave group velocity  

   
 

  
   

   

          
 , 

where   is the radian wave frequency, k is the radian 
wave wavenumber, and h is the water depth.  The 
solution for Cg must be found iteratively, as there 
unknowns on both sides of the equation. 

Wave power was computed for each record in the gap-
filled 18m data set. The results were then interpolated 
to even hour increments.  Interpolations were not 
performed over data gaps longer than 6 h.  Based on 
an hourly record count, unresolved gaps comprised 
only 6% of the resulting interpolated data set. 

Average and total energy calculations were performed 
over each month and each year of the gap-filled data 
set. The average wave power is simply the average of P 
over the time period of interest.  The total wave 
energy is given by 

       . 

Furthermore the total energy of significant storm 
events was calculated.  Storm events are defined after 
Birkemeier et al. (1999), as an event with Hs > 3.0m.  
Storm duration is determined from the time that the 
wave height exceeded 3.0m until the height fell below 
2.35m (which was the mean wave height plus two 
times the standard deviation in the Birkemeier et al. 
study). 

4.2 Climate trends 

The hourly wave power record for the 18m station, 
shown in Figure 8, depicts a pattern of extreme wave 
power events over the study duration.  Hurricane 
Isabel (2003) is the storm of record (35-years) with a 

maximum hourly wave power of 311 kW/m.  Other 
significant events include Hurricanes Gloria (1985) and 
Sandy (2012) which exhibited >200 kW/m hourly wave 
power.  Inspection of wave power events rising above 
150 KW/m suggests that the frequency of occurrence 
has increased in the past decade. 

 

Figure 8.  Hourly gap-filled wave power record for the 18m 
depth station. 

The long-term record was used to compute monthly 
average wave power for the 35-year period.  The 
results, depicted in Figure 9, show the dramatic 
changes that occur over the course of a year.  Average 
wave power is lowest in July, increases by a factor of 4 
by September, and remains at high levels through 
March.  For 6 months each year the monthly average 
wave power rises above 6 kW/m. 

 

Figure 9.  Average monthly wave power computed over 1981 
through 2014 at 18m depth. 

Long-term trends are revealed by annual wave energy 
and wave power statistics. Annual variability in average 
wave power, appearing in Figure 10 (lower panel) 
suggests a 3-5 year cycle.  This trend is strongly evident 
in the annual total wave energy, appearing in Figure 10 
(upper panel). In particular from 1990 through 2010 
there is strong evidence of a 3-5 year cycle in annual 
total wave energy.  Such sequences are likely driven by 
major atmospheric cycles such as El Niño Southern 
Oscillation and the North Atlantic Oscillation (NAO), 
which are both known to influence storm activity in 
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the Atlantic.  Neither the average power nor total 
energy statistics show any discernible long term trends 
towards increasing or decreasing coastal wave energy 
conditions. 

 

Figure 10.  Annual total wave energy (upper panel) and 
average wave power (lower panel) based on the gap-filled 
record at 18m depth. 

Of particular interest is the storm event chronology, as 
this an important indicator of wave–induced coastal 
change (Birkemeier et al., 1999). A 35-year storm 
history appears in Figure 11.  The total storm energy 
(upper panel) essentially updates Figure 5 in 
Birkemeier et al. (1999).  Total storm duration (lower 
panel) is included for reference as total storm energy is 
obtained by integrating the wave power over the 
entire storm duration (see Wave Energy Calculations 
above). The most energetic storm events are labeled, 
and it should be noted that the storms that produce 
the highest hourly wave power values (Figure 8), are 
not necessarily the most energetic storms.  Although 
most of the long-duration / high wave energy events 
are nor’easters, the overall storm event of record is 
Hurricane Dennis (1999), with 100 h (4-day) duration 
of high power waves.  Other high-energy events 
include Hurricanes Sandy (2012) and extratropical 
storm Nor’Ida (2009).  Note that Hurricane Isabel 
(2003), which was our hourly wave power storm of 
record (Figure 8), is only the eighth most energetic 
storm on record for this period, with a 40-h duration.  
Linear regressions on both storm power and storm 
duration show slight increases over time; however 
data scatter is high and confidence in the result is low. 

 

 

Figure 11.  Storm event total energy (upper panel) and duration (lower panel) based on the gap-filled record at 18m depth. 
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SUMMARY 

The 35-year wave climate in a dynamic coastal setting 
is described.  Using records from multiple wave 
observation stations at the USACE Field Research 
Facility in Duck, NC, a near continuous coastal wave 
record is developed at 18m depth. To fill critical data 
gaps, wave spectral parameters are transformed 
between cross-shore measurement stations ranging 
from 8m to 26m in depth.  The transformations are 
accomplished using a non-linear artificial neural net 
modeling approach. The resulting 35-year hourly wave 
spectrum record is 94% complete with data gaps 
occurring only 6% of the time. 

The wave spectrum record is used to describe the 
nearshore wave power and energy climate. A fully 
depth-dependant spectral calculation of wave power 
provides an accurate assessment of nearshore wave 
power.  Hourly wave power depicts the frequency and 
intensity of large wave events over the 35-year record. 
Hurricane Isabel (2003) is the storm of record for 
maximum hourly wave power.   The results suggest 
that the frequency of occurrence of high-power wave 
events has increased in the past decade.  Annual 
statistics depict a 3-5 year cycle, which is most 
prevalent in annual total wave energy.   Such cycles are 
likely driven by major atmospheric cycles (including El 
Niño and NAO), and additional work is underway to 
investigate this cyclic behavior.  There are no obvious 
long term linear trends based on the annual statistics. 

Finally a coastal storm event chronology is presented 
for the 35-year period.  Comparisons with Birkemeier 
et al. (1999) show decreased event energies as a result 
of an improved calculation of coastal wave power.  
Storms that produce the highest hourly wave power 
are not necessarily the most energetic events.  
Although nor’easters dominate most of the storm 
event record, Hurricane Dennis (1999), persisting for 
100 h, is the most energetic storm of the period.   

Ongoing work is focused on describing the coastal 
wave climatology in terms of sea and swell sources. 
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